Revealing community structures by ensemble clustering using group diffusion
نویسندگان
چکیده
منابع مشابه
The ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملA new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble
An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...
متن کاملEnsemble Clustering using Semidefinite Programming
We consider the ensemble clustering problem where the task is to 'aggregate' multiple clustering solutions into a single consolidated clustering that maximizes the shared information among given clustering solutions. We obtain several new results for this problem. First, we note that the notion of agreement under such circumstances can be better captured using an agreement measure based on a 2D...
متن کاملEnsemble clustering using factor graph
In this paper, we propose a new ensemble clustering approach termed ensemble clustering using factor graph (ECFG). Compared to the existing approaches, our approach has three main advantages: (1) the cluster number is obtained automatically and need not to be specified in advance; (2) the reliability of each base clustering can be estimated in an unsupervised manner and exploited in the consens...
متن کاملEnsemble document clustering using weighted hypergraph generated by NMF
In this paper, we propose a new ensemble document clustering method. The novelty of our method is the use of Non-negative Matrix Factorization (NMF) in the generation phase and a weighted hypergraph in the integration phase. In our experiment, we compared our method with some clustering methods. Our method achieved the best results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Fusion
سال: 2018
ISSN: 1566-2535
DOI: 10.1016/j.inffus.2017.09.013